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Electron tomography is the only technique available that allows us
to visualize the three-dimensional structure of unfixed and un-
stained cells currently with a resolution of 6–8 nm, but with the
prospect to reach 2–4 nm. This raises the possibility of detecting
and identifying specific macromolecular complexes within their
cellular context by virtue of their structural signature. Templates
derived from the high-resolution structure of the molecule under
scrutiny are used to search the reconstructed volume. Here we
outline and test a computationally feasible two-step procedure: In
a first step, mean-curvature motion is used for segmentation,
yielding subvolumes that contain with a high probability macro-
molecules in the expected size range. Subsequently, the particles
contained in the subvolumes are identified by cross-correlation,
using a set of three-dimensional templates. With simulated and
real tomographic data we demonstrate that such an approach is
feasible and we explore the detection limits. Even structurally
similar particles, such as the thermosome, GroEL, and the 20S
proteasome can be identified with high fidelity. This opens up
exciting prospects for mapping the territorial distribution of mac-
romolecules and for analyzing molecular interactions in situ.

I t has been a dream of cell biologists to catch a glimpse of the
molecular architecture inside cells or cellular organelles, ide-

ally by using a noninvasive technique (1–3). Rapid freezing
techniques have been developed, which allow the ‘‘vitrification’’
of biological materials and thus ensure their close-to-life pres-
ervation (4, 5). With the advent of automated electron tomog-
raphy (6–9) it has become possible to obtain three-dimensional
(3D) data sets of whole ice-embedded cells or organelles (10, 11)
with subcritical doses. Currently, the resolution obtained in
electron tomography of cellular structures (Fig. 1) is in the range
of 6 to 8 nm. It is reasonable to expect that high-end instru-
mentation will bring us into the realm of molecular resolution
(2–4 nm). The goal of cellular electron tomography is not to
obtain a high-resolution structure of a particular macromole-
cule; the goal is to identify a molecule by virtue of its structural
signature and to locate it in the context of its cellular environ-
ment. Inevitably, the electron tomograms will suffer from a low
signal-to-noise ratio (SNR), and so-called denoising techniques
(12, 13) can provide only partial remedy. However, if we have
high- or medium-resolution structures of the molecule under
scrutiny, furnished by x-ray crystallography, electron micros-
copy, or any combination of structural biology techniques, these
can be used as templates to search the reconstructed cellular
volume. This type of scan will make it possible not only to map
the distribution of molecules within the cell; it also will reveal the
spatial relationships of molecules in functional modules.

The purpose of this paper is to outline a computationally
feasible strategy for the detection and identification of macro-
molecules in tomographic reconstructions. Using real and sim-
ulated data we explore the fidelity of the approach and the limits
of detection. In principle it is certainly possible to scan the entire
reconstructed volume by 3D cross-correlation with a molecular
template. However, such a ‘‘brute force’’ approach is computa-
tionally very expensive, because the orientation of the particles

will be random and, consequently, the whole angular range has
to be scanned by rotating the templates and calculating the
cross-correlation coefficient (CCC) for all independent combi-
nations of Eulerian angles. As an alternative, we explore a
two-step approach. In the first step, the tomographic volume is
segmented by use of a nonlinear anisotropic diffusion procedure,
referred to as mean-curvature motion (MCM) (14). This par-
ticular diffusion process equilibrates uncorrelated structures and
highly curved features (e.g., small proteins, noise) faster with
their environment than particles exhibiting surfaces with a lower
curvature (e.g., macromolecules, cellular compartments). The
appropriate adjustment of the number of iterations makes it
possible to selectively detect the position of particles with a
specific curvature, yielding subvolumes containing particles in
the size range of interest with a high probability.

In a second step, the particles contained in the subvolumes are
compared with known structures by calculating the 3D cross-
correlation of the segmented volumes with known protein
templates. Compared with the brute force approach, the number
of necessary correlation functions is significantly reduced. Nev-
ertheless, these scans have to be carried out for every segmented
subvolume, for every template to be searched for and for every
independent set of Eulerian angles. The maximum of a set of
correlation peaks is assumed to yield the correct type of particle,
as well as its precise position and orientation.

To test this object identification algorithm quantitatively, we
applied it to simulated tomographic volumes. Depending on the
resolution and the SNR, the detection limits were analyzed,
knowing the correct positions, orientations, and types of parti-
cles to be detected. This part of the study provides quantitative
measures for the reliability of the detection procedure. The
feasibility of the algorithm for real data was analyzed by scanning
electron-tomographic volumes, containing specific purified mac-
romolecules, with several structurally similar templates.

Methods
Artificial Volumes. In single-axis electron tomography, a set of
projection images is recorded by tilting the specimen holder
stepwise about one axis. The projections are translationally
aligned and backprojected into a common volume to reconstruct
the 3D volume of the object (15–17). Two major restrictions
apply. Cryo-specimen holders do not allow to tilt the specimen
beyond 6 70°. The radiation sensitivity of the ice-embedded
biological materials limits the number of projections that can be
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recorded without damaging the sample, and thus the cumulative
dose should not exceed 2,000–5,000 e2ynm2. As a result, the 3D
reconstructions suffer from a low SNR, an elongation of the
point-spread function in the z-direction (missing wedge) and
ultimately a limitation in resolution because of the limited
number of angular samples. All of these effects must be taken
into account when simulating tomographic reconstructions
realistically.

Synthetic tomographic volumes were generated by randomly
positioning and orienting low-frequency filtered crystal struc-
tures of three types of macromolecules within a test volume. The
frequency cut-offs were set to 2-, 4-, and 8-nm resolution,
respectively, which covers the range between the resolution that
is currently attainable with cellular structures (6–8 nm) and the
resolution we expect to achieve with high-end instrumentation
(2–4 nm). Projecting the test volumes perpendicular to a virtual
tilt axis with 5° increments from 260° to 160° resulted in a
simulated data set of a single-axis tilt series. The images were
convoluted with a contrast transfer function corresponding to a
Philips Twin-lens electron microscope operated at 300 kV and 4
mm underfocus. The projections were shifted randomly in the x-y
plane to model alignment errors of the projections with a
variance of 1 pixel, a value typical for experimental data. The
volumes were reconstructed by weighted back projection. Col-
ored noise [with a cut-off at (3.6 nm)21, corresponding to 1y4 of
the Nyquist frequency], again reconstructed from projections in
the range from 260° to 160° with 5° increments, was added to
the particle volume. The SNR equaled 0.5, a realistic value for
tomographic reconstructions obtained with an energy filtering
microscope at 4 mm underfocus as measured for real data sets
using SNR 5 CCCy(CCC 2 1) (17). The SNR of the simulated
volumes was determined by using 343 pixels per volume and a
pixel size corresponding to 0.45 nm, leading to volumes just
slightly larger than the particles (SNR 5 ss

2ysn
2 with ss

2 and sn
2

being the variances of the signal and the noise, respectively).
Three test molecules of similar size and shape were used: the

20S proteasome (721 kDa, ref. 18), the group I chaperonin
GroEL (840 kDa, ref. 19), and the thermosome, representing the
group II chaperonins (933 kDa, ref. 20). Fig. 2 shows isosurface
representations of the crystal structures of the test molecules
filtered to 2-, 4-, and 8-nm resolution, respectively. Slices through
the simulated volumes containing the three molecules filtered to
4-nm resolution are shown in Fig. 3. All image processing steps

described here were carried out by using the EM program
package (21).

Protein Isolation, Sample Preparation, and Data Acquisition. Mole-
cules of the same type as used in the simulations (20S protea-
somes and thermosomes) also were used in recording real
tomographic data sets. The a-only thermosomes were expressed
in Escherichia coli (22, 23). The sample was applied to a holey
carbon film grid. After blotting, the samples were vitrified by
plunging them into liquid ethane (4). Single-axis tilt-series of the
thermosomes were recorded by using a CM 200 FEG (Philips,
Eindhoven, The Netherlands) at 120 kV accelerating voltage and
a nominal underfocus of 2 mm. Data were recorded from 254°
to 1 54° with 6° angular increments. The cumulative dose used
for recording the tilt series was '2,000 e2ynm2. The experimen-

Fig. 1. Two x-y slices of a tomographic reconstruction of a whole ice-
embedded Pyrodictium abyssi cell. The plasma membrane and intracellular
vesicles are clearly recognizable. The vesicles are surrounded by dark protein
masses, probably macromolecular assemblies involved in exo- or endocytosis.
The resolution of the tomographic data set, obtained with a CM 120 Biofilter,
is about 8 nm.

Fig. 2. The three macromolecular assemblies used as test particles: (A) the
thermosome (` '16 nm) with an 8-fold rotational symmetry, (B) GroEL (` '15
nm) with a 7-fold rotational symmetry, and (C) the 20S proteasome (` '12 nm)
with a 7-fold rotational symmetry. The particles were filtered to 2-, 4-, and
8-nm resolution (from left to right).

Fig. 3. Artificial electron-tomographic volumes of (A) thermosome, (B) 20S
proteasome, and (C) GroEL macromolecules. The particles were randomly
distributed and oriented within the volumes. To simulate electron-
tomographic data acquisition, the volumes were projected perpendicular to a
virtual tilt axis from 260° to 1 60° with 5° increments. The projections were
shifted in the x-y plane, convoluted with a realistic contrast transfer function,
backprojected and obscured by ‘‘colored noise’’ with a SNR of 0.5.
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tal setup for automated tomographic data collection has been
described (6, 7). A slice through the reconstruction is shown in
Fig. 4A.

The 20S proteasomes were isolated from Drosophila melano-
gaster embryos as described (24), and the method of sample
preparation was the same as described for the thermosome.
Tomographic data sets were recorded by using a Philips CM 120
Biofilter at an underfocus of 3 mm. To achieve a uniform spacing
of the projections in the z*-direction within the resolution sphere
in Fourier space, the angular increment followed the Saxton
scheme (25) with an initial tilt increment of 2.5° from 269° to
166°. After the alignment using gold markers, the 3D recon-
struction was computed by weighted back projection.

Generation of Templates. To generate the templates required in
the search algorithms, the atomic coordinates of the yeast 20S
proteasome and E. coli GroEL were downloaded from the
Protein Data Bank (http:yywww.rcsb.orgypdbyindex.html). For
the thermosome in the open, substrate-accepting conformation,
as it is observed in cryo-electron micrographs (26), only a
pseudoatomic model is available (20). For all templates, the
gray-scale value of each voxel was assigned according to the sum
of atomic numbers of atoms contained in that voxel. The voxel
size was chosen corresponding to the sampling of the recon-
structed tomographic volumes. Next, the templates were filtered
to the resolutions expected for tomographic reconstructions (2,
4, and 8 nm, respectively). The cut-off in Fourier space at the
frequency fc was smoothed by a Gaussian kernel with width of
fcy2.

Volume Segmentation by MCM. Segmentation techniques allow us
to reduce the amount of data significantly by extracting the
information that is relevant for a given purpose. In electron
tomography, conventional segmentation techniques (e.g., mul-
tiple thresholding criteria, iso-elevation contour lines; ref. 27)
usually fail because of the low SNR and tomographic artifacts
(2). Here, we applied MCM for tomographic volume segmen-
tation. The method does not rely on high-contrast features nor
is it very sensitive to noise or artifacts. Only the size and the
shape of objects are relevant and not the structure; unlike
correlation techniques, MCM does not require a reference.
Moreover, it outperforms standard correlation techniques by far
in terms of computation time.

MCM can be considered as the evolution of level lines, which
are driven by forces depending on the local curvature (14, 28).

Following a theorem by Grayson (29), such a level line collapses
to a point and finally disappears. The process can be described
by the following equation:

I
t

5 u¹IuzdivS ¹I
u¹IuD 5 kzu¹Iu ,

with I being the 3D density distribution, t the time, and k the
curvature (28). For the implemented discretization technique
see the supplemental material that is published on the PNAS web
site, www.pnas.org.

It is assumed that the volume exhibits objects, e.g., macro-
molecules, which are identified on the basis of gray levels
different from those of the background. Starting with a complex
volume, features of interest and the noise are degraded in
parallel at decreasing resolution levels, resulting in a constant
gray-value volume. As all isointensity surfaces move depending
on their curvature, highly curved features, such as sharp edges
or uncorrelated noise are smoothed out and eliminated first.
Extended features are degraded more slowly and thus can be
distinguished from their surroundings. When applying MCM,
the radius of a spherical particle r is a function of iteration time
(e.g., the number of iterations t). The number of iterations t until
an isointensity surface of a structure with an initial radius r(0)
vanishes follows from the equation: r(t) 5 =r(0)2 2 2ct. The
starting radius r(0) corresponds to the boundary radius of the
feature in pixels, c is a constant. Objects of the same diameter
shrink and disappear at the same iteration step, and small objects
disappear faster than larger ones. For particle detection, the
singularity points of the vanishing isointensity surfaces are
determined and used as pointers to the position of the particles.
To automatically detect the peaks corresponding to the coordi-
nates of a particle we applied the following algorithm. First, the
maximum of an area is determined. A sphere with the diameter
of the particle under scrutiny is cut out and the maximum of the
boundary is calculated. If the maximum satisfies a certain
threshold, the peak is going to be further classified. This pro-
cedure ensures that only objects falling into the predetermined
size range will be detected.

Particle Identification. Once subvolumes containing particles in
the size range of interest are cut out, cross-correlation tech-
niques are used to measure the degree of overall similarity of the
particles under scrutiny to structurally well-defined templates. In
the case of electron tomograms of cellular structures, the
orientation of the particles is expected to be random. To yield
the absolute maximum of all cross-correlation coefficients, the
whole angular range needs to be scanned with each template.
Rotating the templates to every independent combination of
Eulerian angles with 10° increments coarsely scans the three
rotational degrees of freedom. The particle then is translation-
ally aligned with the templates and the angular scan is refined by
a 6 5° fine-scan with 1° increment around the Eulerian angles
derived from the previous cycle. The massive amount of corre-
lation functions that needs to be calculated for this step typically
results in approximately 1 h of computation time for each
particle and for each template on a SGI R10000 processor (SGI,
Mountain View, CA). The analysis of a whole tomographic
volume, containing several hundred particles that need to be
compared with an array of different templates, would require
several weeks or even months of computation time. To perform
the computation within reasonable time, the algorithm was
adapted to a Cray T3E-600 with 784 processors, using the
parallelized version of the EM program package. Every processor
reads one template and one particle volume into memory and
performs the angular scan. The maximum of all CCCs is
determined before the next particle volume is read into the
memory. After all particles have been subjected to cross-

Fig. 4. (A) Slice from the tomographic reconstruction of ice-embedded
thermosome particles. The particles are preferentially arranged in a top-view
orientation at the water-air interface before freezing. Two high-contrast gold
particles, used for aligning the projections, are visible in the right half of the
left image. (B) A projection of the MCM-processed version of A after 10
iterations. The peaks detected by the peak search algorithm described are
shown as white crosses. The particles close to the border of the volume were
excluded from detection.
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correlation, the next template is read and the peak search is
repeated. As communication between the processors is minimal,
this task lends itself to parallelization. The computation time
scales inversely with the number of processors being used.

Results
Performance of MCM. MCM was used to segment the tomographic
volumes before calculating the cross-correlation functions with
the templates. The reliability of the particle detection by MCM
was analyzed by using artificial volumes with SNRs ranging from
0.06 to 2 (Fig. 5). An MCM-processed image of real thermo-
somes and the corresponding peak detection is shown in Fig. 4B.

For SNRs better than 0.2, the ratio of correct versus incorrect
detections turned out to be satisfactory (. 90% detected). The
detection reliability is affected when particles are in close contact
with each other. In this case the particle images become con-
fluent and vanish later than expected considering the radius of
the particles. Conversely, problems arise also when images of
multisubunit complexes display poor connectivity; the corre-
sponding blobs will disappear after relatively few iteration steps
and thus escape the detection.

When subjecting noisy electron-tomographic data to a MCM
procedure, areas corresponding to particle images shrink to
small, noise-free blobs, which can be detected automatically by
a peak search routine. The process preserves the center of mass
of each particle. Therefore the subsequent correlation analysis
can be performed for each particle within a small volume around
the center of mass. When compared with the overall volume of
a tomogram, an enormous data reduction is achieved. Further-
more, the algorithm is computationally very efficient. For ex-
ample, only 15 s are needed for one iteration with a 2563 volume
on a R10000 SGI processor. The preknown size of the particles
of interest can be used to adjust the number of necessary
iterations accordingly (typically 20–30).

Protein Identification. The main goal of the approach presented
here is to test the feasibility of identifying known proteins in
tomographic reconstructions of small cells. For an assessment of
the quality of the identification, two methods are used.

First, the height of the correlation peaks is used as an
identification criterion. The maximum correlation coefficient of
a volume containing only one particle of type i (Voli) scanned
with a template of the same type of particle (Templi) is deter-
mined: CCCmax(Voli, Templi). As the particle volume and the
template were generated by using the same type of particle,
CCCmax(Voli, Templi) measures the maximum correlation
height one can expect for a template and a reconstructed volume

containing an identical molecule in the presence of noise. Next,
the particle volume Voli is correlated with a template generated
by using a different type of particle (Templj), resulting in
CCCmax(Voli, Templj). This number is compared with CCCmax-

(Voli, Templi) by calculating the ratio of the two numbers. Thus,
we measure the relative heights hij of the cross-correlation peaks
of a particle volume scanned with the ‘‘correct’’ template (mean-
ing that particle and template are the same molecule, e.g., i 5 j)
versus an ‘‘incorrect’’ template particle (meaning that particle
and template are a different molecule, i Þ j):

hij 5
CCCmax(Voli, Templi)
CCCmax(Voli, Templj)

,

if hij . 1 we assign that the particle was identified;
if hij , 1 we assign that the particle was not identified.

As a second measure for the identification fidelity, we analyze
the statistical distribution of the correlation peaks. Assuming a
normal distribution of the correlation peak heights, we deter-
mine the significance level a of the detection results, i.e., the
probability that an existing particle is not identified (30), by
using:

a~q! 5 1 2
2

Î2p
E

0

q

e 2
1
2

x2 dx

with

q 5
uCCC# ii 2 CCC# iju

Îsii
2

nii
1

sij
2

nij
,

with CCC being the average of correlation peaks for a particle
i scanned with template i and j. s is the standard deviation of
CCCs, and n is the number of CCCs.

With real tomographic data sets containing thermosomes, the
height of the maximum correlation peak was on average 1.67
times smaller for subvolumes scanned with a 20S proteasome
template instead of the correct thermosome template, and it was
1.28 times smaller when GroEL was used as the template (Fig.
6A). With the 20S proteasome data set (Fig. 6B), the differences
were even more pronounced. The maximum correlation peaks
are three times smaller if the volume was scanned with a
thermosome template instead of the correct 20S proteasome
template, or 1.65 times smaller when GroEL was used as a
template. With both reconstructed volumes of purified protein
complexes, h was greater than 1 for every particle scanned and
thus the algorithm yielded the correct identification in all cases.

For the thermosomeyGroEL comparison q was calculated to
be 7.9, and for the thermosomey20S proteasome comparison q
was 6.3. Again, with the 20S proteasome data, the detection
quality is higher: q 5 13.8 for the 20S proteasomeythermosome
comparison and 7 for the 20S proteasomeyGroEL comparison.
The calculated values for q in turn are used to derive the
significance levels a. The tabulated values for a all are found to
be smaller than 0.01%. Following the criterion of significance
levels, more than 99% of all particles are identified correctly. The
higher overall correlation levels observed with the 20S protea-
some volume reflect the limited resolution of the data set,
obtained by using a Philips CM 120 Biofilter with a tomographic
setup that was optimized for cellular but not molecular
structures.

For exploring the detection limits we used simulated tomo-
graphic reconstructions (Fig. 7). When two related particles are
very similar in size and shape, such as the thermosome and
GroEL, and the main discriminating feature is their symmetry

Fig. 5. Performance of MCM on the detection of macromolecules in simu-
lated electron-tomographic volumes. The percentage of particles located
correctly, of existing particles not detected (false negatives) and nonexisting
particles detected (false positives) was measured at different SNRs.
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(8-fold vs. 7-fold), the fidelity of identifying them correctly
improves at higher resolutions. At resolutions better than 4 nm,
the significance level drops below 10%; nevertheless, when
relative CCC peak heights are used as detection criterion, more
than 80% of the particles are identified correctly. It is not
surprising that the discrimination of the 20S proteasome from
the other particles is less demanding; the proteasome has the
same 7-fold symmetry as GroEL, but deviates markedly from the
two chaperonins in its diameter (approximately 12 nm compared
with 15 nm and 16 nm, respectively). It is surprising, though, that
the fidelity of discriminating the 20S proteasome from the two
chaperonins does not improve at higher resolutions. It appears
that the differences in the low-frequency range are strong
enough to ensure a correct identification.

Discussion
Currently, the resolution of electron tomograms of whole ice-
embedded prokaryotic cells and organelles is limited to 6–8 nm.
However, with more advanced instrumentation an improvement
in resolution by a factor of 2 can be expected in the near future.
This will set the stage for an analysis of in situ molecular
architecture. Obviously, the reconstructions will suffer from a
low SNR, and tomographic artifacts will degrade the quality of
reconstructions further (e.g., missing wedge, discrete angular

sampling). Therefore, we cannot expect to be able to interpret
such tomograms by visual inspection. Provided that high-
resolution structures of the molecules of interest are available,
we can, however, generate templates that allow us to search the
reconstructed volumes and to map out the spatial distribution of
structures that match the templates. If we perform the search
with multiple templates, we can analyze the spatial relationships
of molecules in functional modules with unprecedented resolu-
tion. Hitherto, the physical isolation of many types of supramo-
lecular structures remained elusive, because they are not held
together by forces strong enough to withstand biochemical
separation techniques. Once the position and the orientation of
a macromolecular complex has been identified, subvolumes can
be extracted and subjected to standard averaging and image
classification procedures; this will provide additional means to
analyze functionally relevant molecular interactions.

A single tomographic reconstruction, even of a small prokary-
otic cell or an organelle of the size of a mitochondrion, is
represented by a huge data set exceeding 2 gigabytes. Because

Fig. 6. Distribution of the CCC peak-heights for the reconstructed 20S
proteasomes (A) and thermosome (B) particles. The reconstructed volumes
were independently correlated with a 20S proteasome, a GroEL, and a ther-
mosome template. The correlation peaks are distinctively higher if particle
volume and template correspond to each other and thus the correct particle
can be discriminated. Upon visual inspection, the particles corresponding to
the left tails of the distribution appear to have structural defects. All particles
have been identified correctly.

Fig. 7. Identification results for simulated volumes at different resolutions.
(A) The percentage of particles detected correctly is shown. The detection
criterion was the following. The correlation peak of particle volume i and
template i was calculated. The result was divided by the correlation peak of
particle volume i and template j. If the result was . 1, the identification was
assumed to be correct. (B) The average of this ratio over all particles is plotted.
Because of the difference in diameter, the 20S proteasome can be easily
discriminated from the two other particles. To distinguish the thermosome
and GroEL, a good resolution is obligatory as the low-resolution information
of the two particles is basically identical (same size and shape), whereas the
high-resolution data differ because of the distinct symmetry (8-fold vs. 7-fold).
The opposite is true for the discrimination of GroEL and the 20S proteasome:
the two particles are identical in symmetry, but differ in size, therefore a
resolution of 8 nm is sufficient for a successful identification.
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the molecules under scrutiny will occur in all possible orienta-
tions, a search must scan the whole reconstructed volume over
the full angular range. A brute-force approach, calculating
cross-correlation functions for all possible Eulerian angles and
for every single template is computationally extremely demand-
ing. Scanning a 512 3 512 3 512 pixel volume with a single
template and a 5° angular increment would result in approxi-
mately 2,000 days of computation time on a single SGI R10000
processor.

Therefore, we have developed and explored a two-step ap-
proach. First, we use a curvature-dependent anisotropic diffu-
sion process, MCM, yielding subvolumes that contain particles in
the size range of interest. This procedure has been applied to real
and simulated data. Although the method is not error-free, in
particular when particles are in close contact with each other, it
is sufficiently reliable, especially because the hits that do not
correspond to a particle are, most likely, eliminated in the
subsequent particle identification step. In the second step, the
content of the subvolumes determined by MCM is compared
with several templates by cross-correlation, yielding a set of
peaks, the height of which is a measure of similarity to the
templates. The limits for particle identification were investigated
by analyzing the detection behavior for simulated volumes at
different resolutions. A resolution of 4 nm turned out to be
sufficient to distinguish macromolecular complexes with a sim-
ilar shape and geometry, but differing in their dimensions as do
the 20S proteasome and GroEL. In this case, the differences of
low-frequency components result in a higher detection efficiency
at 8-nm resolution than at 2 nm, and therefore make an
identification easier at a low resolution. A tomographic recon-
struction and a template with a resolution better than 4 nm are
required, however, for discriminating particles as similar as the
group I chaperonin GroEL and the group II chaperonin ther-
mosome. Beyond this resolution, the detection results are very
satisfactory and high detection reliability is achieved.

Nevertheless, the question remains as to the extent that this
study and the promising results can be transferred to real
tomographic volumes of whole cells. Several problems will arise
when proceeding from relatively thin molecular specimens to

several 100 nm thick, densely packed cells, or organelles. Con-
sidering inelastic scattering, the number of electrons being
detected is proportional to e-d/L (d 5 thickness of specimen, L
5 mean free path). Additionally, the concentration of macro-
molecules in the cytoplasm of bacteria is assumed to be 0.3–0.4
gyml (31), thus reducing the detection probability compared
with molecular specimens in physiologic buffer. Plural scattering
and energy transfer from the high-voltage electron beam to the
sample must be taken into account. Balancing the SNR and
the effects of radiation damage will be of major importance for
the identification of molecules in vivo and finally will determine
whether identification is possible.

The computational difficulty of detecting and identifying
molecules is further increased if they exist in more than one
functional state. Many molecular machines undergo large-scale
conformational changes as they proceed through their functional
states. The thermosome, for example, alternates between an
open, substrate-acceptor state and a closed, folding-active state
(20, 26). If the mass movement is quite small, it may be difficult
to distinguish between the two conformers. On the other hand,
if it turns out to be feasible to discriminate between the two
conformers by means of appropriate templates, this opens up
exciting possibilities to monitor their activity in situ.

Different groups, including ours, are setting up high-end
tomographic systems, and reconstructions with improved reso-
lution will be available soon. Despite the aforementioned diffi-
culties, we expect that a reliable identification of single mole-
cules in frozen-hydrated cells will become feasible at a resolution
better than 4 nm, sometimes even at lower resolutions. Thus,
cellular electron tomography, in conjunction with the detection
and identification techniques described in this paper, will bridge
the gap between structural biology and cell biology.
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